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Notes for Recitation 20 

Philosophy of Probability 

Applying probability to real-world processes often involves a little bit of philosophy. Let’s 
first consider this simple problem: What is the probability that 

N = 26972607 − 1 

is a prime number? One might guess 1/10 or 1/100. Or one might get sophisticated and 
point out that the Prime Number Theorem implies that only about 1 in 5 million numbers 
in this range are prime. Or one can say that assigning a probability to this statement is 
nonsense because there is no randomness involved; the number is either prime or it isn’t. 

This question highlights the distinction between two philosophical approaches to prob­
ability. One school of thought says that probabilities can only be meaningfully applied to 
repeatable processes like rolling dice or flipping coins. In this view, the probability of an 
event represent the fraction of trials in which that event will occur. This view is sometimes 
called classical statistics, sampling theory, or the frequentist approach. 

An alternate view is the Bayesian approach, in which a probability can be interpreted 
as a degree of belief in a proposition. A Bayesian would agree that the number above is 
either prime or composite, however would be perfectly willing to assign a probability to each 
possibility. The Bayesian approach is thus broader and willing to assign probabilities to 
any event, repeatable or not. One challenge with the Bayesian approach is coming up with 
reasonable prior probabilities for events that only occur once. 

As an aside, it is not clear whether Bayes himself was Bayesian in this sense. However, 
a Bayesian would be willing to talk about the probability that Bayes was Bayesian while 
a sampling theorist would say that is nonsense because there is no repeatable process that 
generates Bayes’ beliefs! 

Getting back to prime numbers, there is a probabilistic primality test due to Rabin and 
Miller. If N is composite, there is at least a 3/4 chance that the test will discover this. (In 
the remaining 1/4 of the time, the test is inconclusive; it never produces a wrong answer.) 
Moreover, the test can be run again and again and the results are independent. So if N 
actually is composite, then the probability that k = 100 repetitions of the Rabin-Miller do 
not discover this is at most: � �100
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So 100 consecutive inconclusive answers would be extremely convincing evidence that N 
is prime! If you’re comfortable using probability to describe your personal belief about 
primality after such an experiment, you might be a Bayesian. Otherwise, you might prefer 
more traditional views of probability. 

The Bayesian/Frequentist divide is an interesting one philosophically, but relatively minor 
in practice; The mathematics of probability remains the same and either approach can lead 
one astray when modeling real-world processes if the model is based on unsound assumptions. 
This differences aren’t relevant to the mathematics of probability that we teach in 6.042, but 
do come up in practical courses on statistics, estimation and decision theory. 

A Sampling-Theory Approach to Polling 

Consider a simple yes/no public opinion poll. In a classical view, every person in the popu­
lation has a definite opinion and so we assume that there is some fraction p of the population 
would answer “yes” to the question and the remaining 1 − p fraction would answer “no”. 
(Let’s forget about the people who hang up on pollsters or launch into long stories about 
their dog — real pollsters have no such luxury!) Now, p is a fixed number, not a randomly-
determined quantity. So trying to determine p by a random experiment is analogous to 
trying to determine whether N is prime or composite using a probabilistic primality test. 

Probability slips into a poll since the pollster samples the opinions of a people selected 
uniformly and independently at random. The results are qualified by saying something like 
this: 

“One can say with 95% confidence that the maximum margin of sampling 
error is ±4 percentage points.” 

This means that either the number, q, reported in the poll is within 0.04 of the actual 
fraction, p, or else an unlucky 1-in-20 event happened during the polling process; specifically, 
the pollster’s random sample was not representative of the population at large. This is not 
the same thing as saying that there is a 95% chance that q is within 0.04 of p; it either is or 
it isn’t, just as N is either prime or composite regardless of the Rabin-Miller test results. 
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Suppose that a coin that comes up heads with probability p is flipped n times. Then for 
all α < p 

1 − α 2nH(α) 
αn(1 − p)(1−α)nPr {# heads ≤ αn} ≤ 

1 − α/p 
· � 

2πα(1 − α)n 
· p 

where: 
1	 1 

H(α) = α log2 α 
+ (1 − α) log2 1 − α 

1	 Approximating the Cumulative Binomial Distribu­

tion Function 

A coin that comes up heads with probability p is flipped n times. Find an upper bound on 

Pr {# heads ≥ βn} 

where β > p. Think about the number of tails and plug into the monster formula above. 

Solution. 

Pr {# heads ≥ βn} = Pr {# tails ≤ (1 − β)n} 

Now tails comes up with probability 1 − p. So the answer is the same as above with α 
replaced by 1 − β and p replaced by 1 − p: 

β 2nH(β) 

Pr {# heads > βn} ≤ 
1−β · � 

2πβ(1 − β)n 
· p βn(1 − p)(1−β)n 

1 − 
1−p 

Here we’re using the fact that H(1 − β) = H(β).	 �
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2 Gallup’s Folly 

A Gallup poll found that 45% of the adult population of the United States plan to vote 
Republican in the next election. Gallup polled 640 people and claims a margin of error of 3 
percentage points. 

Let’s check Gallup’s claim. Suppose that there are m adult Americans, of whom pm plan 
to vote Republican and (1 − p)m do not. Gallup polls n Americans selected uniformly and 
independently at random. Of these, qn plan to vote Republican and (1 − q)n do not. Gallup 
then estimates that the fraction of Americans who plan to vote Republican is q. 

Note that the only randomization in this experiment is in who Gallup chooses to poll. 
So the sample space is all sequences of n adult Americans. The response of the i-th person 
polled is “yes” with probability p and “no” with probability 1 − p since the person is selected 
uniformly at random. Furthermore, the n responses are mutually independent. 

a.	 Give an upper bound on the probability that the poll’s estimate will be 0.04 or more 
too low. Just write the expression; don’t evaluate yet! 

Solution. We can regard each response as a coin flip that is heads with probability 
p. In these terms, qn is the total number of heads flipped. So we have:


Pr {qn ≤ (p − 0.04)n}


1 − (p − 0.04) 2nH(p−0.04) 
(p−0.04)n(1 − p)(1−(p−0.04))n≤ 

1 − (p − 0.04)/p 
· � 

2π(p − 0.04)(1 − (p − 0.04))n 
· p

b. Give an upper bound on the probability that the poll’s estimate will be 0.04 or more 
too high. Again, just write the expression. 

Solution. Reasoning as before and using the answer to the preceding problem gives: 

Pr {qn > (p + 0.04)n}


p + 0.04 2nH(p+0.04)


1−(p+0.04)
≤ 

1 −
· � 

2π(p + 0.04)(1 − (p + 0.04))n 
· p(p+0.04)n(1 − p)(1−(p+0.04))n 

1−p 

c.	 The sum of these two answers is the probability that Gallup’s poll will be off by 4 
percentage points or more, one way or the other. Unfortunately, these expressions 
both depend on p— the unknown fraction of voters planning to vote Republican that 
Gallup is trying to estimate! 

However, the sum of these two expressions is maximized when p = 0.5. So evaluate 
the sum with p = 0.5 and n = 640 to upper bound the probability that Gallup’s error 
is 0.04 or more. Pollsters usually try to ensure that there is a 95% chance that the 
actual percentage p lies within the poll’s error range, which is q ± 0.04 in this case. Is 
Gallup’s poll properly designed? 
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Solution. The probability that the error is 0.04 or more is at most


.54 2640·H(.46)

· ·

1 − .46/.5 
· √

2π · .46 · .54 640 
· .5.46 640 .5.54 640 

· 
+ 

.54 2640 H(.54)·
· ·

1 − .46/.5 
· √

2π · .54 · .46 640 
· .5.54 640 .5.46 640 . 

· 
.54 2640·H(.54) 

= 2 ·640 .5.46·640 · 
1 − .46/.5 

· √
2π · .54 · .46 640 

· .5.54
· 

≤ .427 · 2640·H(.54)(.5)640


= .427 2640·H(.54)−640
· 
≤ .427 · 2−3.008


≤ .054


This means that p will lie within the error range of a polled fraction with probability 
0.946. So our estimates suggest Gallup’s poll is not quite large enough to meet the 
claimed 0.95 probability. Since Gallup is a professional, we expect he’s got the poll 
size right, by using a more accurate numerical estimation formula – or he may have 
considered it legitimate to round a very slightly larger margin of error down to 0.04. 
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3 Noisy Channel 

Suppose we are transmitting packets of data across a noisy channel. Each packet has prob­
ability .01 of being lost. Now suppose we are transmitting 10, 000 packets. What is the 
probability that at most 2% of the packets are lost? 

Solution. Sending data over the noisy channel is analogous to flipping 10, 000 coins where 
the probability of heads is p = 0.01 (in this case, a coin coming up heads is equivalent to 
the packet being dropped). We want to know what the likelihood is of greater than α = .2 
of all the coins coming up heads. However, in this case, we have a > p, and cannot use 
the equation we developed earlier. However, we can ask ourselves the question in terms 
of number of tails, where the probability of tails is p = 0.99, and we want to know the 
probability of a at most α0.98 of them coming up tails. 

Plugging this in to our equation, we find that the probability is approximately 

1 − .98 210000(.98log( 
.98 )+.02log( .01 )) 

< 2−60
.00 .02 

1 − .98/.99 2π(.98)(1 − .98)10000 
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